Strukturuntersuchungen an Disiliziden*.

Von

H. Nowotny, R. Kieffer und H. Schachner.

Aus dem I. Chemischen Laboratorium der Universität Wien und dem Metallwerk Plansee G. m. b. H. in Reutte, Tirol.

Mit 4 Abbildungen.

(Eingelangt am 22. Juli 1952. Vorgelegt in der Sitzung am 16. Okt. 1952.)

Den Siliziden der Übergangsmetalle, besonders der 4., 5. und 6. Gruppe, wird heute wegen mancher auffallender Eigenschaften in bezug auf Härte und Zunderfestigkeit erhöhte Aufmerksamkeit geschenkt¹. Ein besonders günstiges Verhalten zeigen die Disilizide, wie ausführliche Untersuchungen an den Systemen von Mo-Si² und W-Si³ bewiesen haben.

Ähnlich wie bei den Hartstoffphasen der Karbide⁴ interessiert wegen der praktischen Verwendung derartiger Silizide der Aufbau von zweiund mehrkomponentigen Disiliziden. Es wurden daher die Disilizid-Schnitte in den Systemen: Cr-Mo-Si, Cr-W-Si, Mo-W-Si, Ti-Mo-Si, Ti-W-Si sowie Ti-Mo-W-Si untersucht.

Die Frage nach dem Aufbau ist aber auch vom kristallchemischen Standpunkt reizvoll, handelt es sich doch bei den Gittern von $Mo(W)Si_2$, CrSi₂ bzw. TiSi₂ um eine einheitliche Strukturklasse, wie von *H. J. Wallbaum*⁵ gezeigt wurde.

^{*} Vorgetragen im Symposium "De re metallica", Reutte, Tirol, 22. bis 26. Juni 1952.

R. Kieffer, P. Schwarzkopf unter Mitarbeit von F. Benesovsky und W. Leszynski, "Hartstoffe und Hartmetalle", Springer-Verlag Wien, demnächst.
 R. Kieffer und E. Cerwenka, Z. Metallkunde 43, 101 (1952).

³ R. Kieffer, F. Benesovsky und E. Gallistl, Z. Metallkunde 43, 284 (1952). Untersuchungen über das System Ta—Si sind im Gange.

⁴ H. Nowotny und R. Kieffer, Z. Metallforschg. **2**, 257 (1947). — H. Nowotny, R. Kieffer und O. Knotek, Berg- u. Hüttenmänn. Mh. **96**, 6 (1951).

⁵ H. J. Wallbaum, Z. Metallkunde **33**, 378 (1941).

Die Gitter besitzen ein und dasselbe Bauelement (vgl. Abb. 1), das in bekannter Weise nach verschiedenem Rhythmus aufeinanderfolgen kann. Nur liegen zum Unterschied zur dichten Packung die verschiedenen Schichten nicht in den Dreierlücken, sondern in Zweierlücken (im Bilde

Abb. 1. XSi₂-Schicht mit Kenn-

zeichnung der Zweierlücken B, C

und D (nach WALLBAUM).

mit B, C, D bezeichnet). Mit der weniger dichten Packung geht eine Abnahme der Koordinationszahl einher.

Auf Grund dieses Bauprinzips sind daher ausgedehnte homogene Bereiche zu erwarten.

Herstellung der Proben.

Mögliche Verfahren zur Herstellung von Metallsiliziden sind in Tabelle 1 angeführt⁶. Die von uns gewählte Methode beschränkte sich ausschließlich auf die Synthese aus den Komponenten durch Sintern. Als Ausgangsstoffe dienten die Disilizide von Cr, Mo, W und Ti; diese Disilizide wurden aus den entsprechenden Metallen bzw. Titanhydrid (in Pulverform) bei

1300° C in Wasserstoffatmosphäre durch Sintern hergestellt. Die Mischungen wurden dann nach einem Verfahren, das zum erstenmal R. Kieffer und E. Cerwenka² auf Silizide anwendeten, druckgesintert. $CrSi_2$ und TiSi₂ enthaltende Systeme wurden auf diese Weise bei Arbeitstemperaturen von 1300 bis 1350° C hergestellt. Für das System $MOSi_2$ — WSi_2 wurden Temperaturen von 1400 bis 1500° C gewählt. Anschließend wurden die Drucksinterkörper

Verfahren	Reaktionsschema
Synthese aus den Komponenten	
a) durch Schmelzen b) durch Sintern (Drucksintern)	$\mathrm{Me} + \mathrm{Si} \rightarrow \mathrm{MeSi}$ $(\mathrm{MeH} + \mathrm{Si} \rightarrow \mathrm{MeSi} + \mathrm{H}_2)$
Umsetzung von Metalloxyden mit Si, SiC, SiO ₂ (Silikate) + C	$\begin{array}{l} \mathrm{MeO} + \mathrm{Si} \rightarrow \mathrm{MeSi} + \mathrm{SiO}_2 \\ \mathrm{MeO} + \mathrm{SiC} \rightarrow \mathrm{MeSi} + \mathrm{CO} \\ \mathrm{MeO} + \mathrm{SiO}_2 + \mathrm{C} \rightarrow \mathrm{MeSi} + \mathrm{CO} \\ \mathrm{Me-Silikat} + \mathrm{C} \rightarrow \mathrm{MeSi} + \mathrm{CO} \end{array}$
Alumino- bzw. magnesothermisches Verfahren	$MeO + Al(Mg) + SiO_2 + S \rightarrow MeSi + Al(Mg)-S-haltige Schlacke$
Kupfersilizidverfahren	$\begin{array}{l} (\mathrm{Cu}\text{-}\mathrm{Si}) + \mathrm{Me} \rightarrow \mathrm{MeSi} + (\mathrm{Cu}) \\ (\mathrm{Cu}\text{-}\mathrm{Si}) + \mathrm{MeO} \rightarrow \mathrm{MeSi} + \\ (\mathrm{Cu} + \mathrm{CuO\text{-}SiO_2}) \end{array}$
Schmelzflußelektrolyse	${f K_2SiF_6+MeO} ightarrow MeSi+KF$
Abscheidung aus der Gasphase	$\mathrm{Me} + \mathrm{SiCl}_4 + \mathrm{H} \rightarrow \mathrm{MeSi} + \mathrm{HCl}$

Tabelle 1. Verfahren zur Herstellung von Siliziden.

⁶ R. Kieffer und F. Benesovsky, Metall 6, 243 (1952).

einer 20stünd. Temperung bei 1300°C unter Wasserstoff in einem mit Mo-Heizleitern ausgestatteten Ofen unterworfen. Sämtliche Ergebnisse beziehen sich also auf einen Temperaturschnitt bei 1300°C. Darüber hinaus wurden die Proben des Systems $MoSi_2$ —WSi₂ auch bei 1800°C 2 Stdn. getempert und untersucht.

Röntgenographische Untersuchungen.

Von den gepulverten Proben der so hergestellten Legierungen wurden Debye-Aufnahmen mit Cu-K-Strahlung gemacht, deren Auswertung das Bestehen von quasibinären Schnitten: CrSi₂-MoSi₂, CrSi₂-WSi₂, MoSi₂-WSi₂, TiSi₂-MoSi₂ und TiSi₂-WSi₂ ergab.

Die Systeme $MoSi_2$ - bzw. WSi_2 - $TiSi_2$: Wegen der Isotypie von $MoSi_2$ mit WSi_2 , die außerdem auch hinsichtlich der Gitterkonstanten fast

Abb. 2 a und b. Verlauf des Volumens der Elementarzellen in den Systemen ${\rm MoSi_2-TiSi_2}$ und ${\rm WSi_2-TiSi_2}.$

gleich sind, überrascht das nahezu gleiche Ergebnis nicht. Die Gitterkonstanten von MoSi₂ und WSi₂ ändern sich durch geringe Zusätze von TiSi₂ nicht, was andeutet, daß praktisch keine Löslichkeit für TiSi₂ vorhanden ist. Ab 40 Mol-% TiSi₂ im System mit MoSi₂ und ab 58 Mol-% TiSi₂ im System mit WSi₂ tritt eine singuläre Kristallart auf, die sich fast bis zum reinen TiSi₂ erstreckt. Diese Phasen (Ti, Mo)Si₂ bzw. (Ti, W)Si₂ kristallisieren nun in einem Disilizidgitter, das gerade zwischen der Folge ABAB (MoSi₂-Typ) und ABCDABCD (TiSi₂-Typ) liegt, nämlich im CrSi₃-Typ, der durch die Folge ABCABC charakterisiert ist.

Es genügen demnach wenige Mol-% an $MoSi_2$ oder WSi_2 , um dem $TiSi_2$ eine andere quasi-allotrope Form aufzuzwingen (Isodimorphie).

In den Tabellen 2 und 3 sind die Auswertungen für (Ti, Mo)Si₂ und (Ti, W)Si₂ wiedergegeben, wobei die Intensitätsrechnung für die Zusammensetzungen (Mo_{0.6}, Ti_{0.4})Si₂, (Mo_{0.2}Ti_{0.8})Si₂ sowie für (W_{0.4}Ti_{0.6})Si₂ durchgeführt wurde. In jedem Falle ist die Übereinstimmung zwischen Beobachtung und Rechnung eine ausgezeichnete.

Die Gitterkonstanten für die genannten Zusammensetzungen sind in k X.E.:

		$Ti_{\theta,4} Mo_{\theta,6} Si_2$			Ti _{0,8} Mo _{0,2} Si ₂	
Index	$10^3 \cdot \sin^2 heta$ gef.	$10^3 \cdot \sin^2 heta$ ber.	Int. ber.	Int. gef.	Int. ber.	Int. gef.
$(10\overline{1}0)$	36,8	36,56	105	ms	39	\mathbf{ms}
$(10\overline{1}1)$	50,6	50,64	575	\mathbf{st}	202	m
(0002)		56,32	0		· 0	
$(10\overline{12})$	93,4	92,88	255	m	90	\mathbf{ms}
$(11\overline{2}0)$	109,7	109,7	178	ms	129	\mathbf{ms}
$(11\overline{2}1)$	123,8	123.8	1170	sst	840	\mathbf{sst}
(0003)	126,7	126,7	425	m	307	m
$(20\bar{2}0)$	145,8	146,2	133	ms	43	s
$(20\overline{2}1)$		160,3	0		0	
$(10\bar{1}3)$		163,3	25		8	
$(11\overline{2}2)$	165,4	166,0	795	\mathbf{st}	567	\mathbf{st}
$(20\overline{2}2)$		202,5	0		0	
(0004)		225,3	0		0	
$(11\bar{2}3)$	235,8	236,4	102	ms	71	s
$(21\overline{3}0)$	·	255,9	11		4	
$(10\overline{1}4)$	261,5	261,9	43	s	14	ss
$(21\overline{3}1)$	269,9	270,0	85	ms	26	s
$(20\overline{2}3)$	272,3	272,9	92	ms	28	s
$(21\overline{3}2)$	311,9	312,2	65	ms	20	s
$(30\bar{3}0)$		329,0	30		22	ss
$(11\overline{2}4)$	334,8	335,0	237	m	166	m
$(30\bar{3}1)$	343,0	343,1	226	m	160	m
(0005)	<u> </u>	352,0	0	· ·	0	
$(20\bar{2}4)$		371,5	0		0	·
$(21\overline{3}3)$		382,6	12		. 3 .	
$(30\overline{3}2)$	384,9	385,3	192	m	134	\mathbf{ms}
$(10\overline{1}5)$	(388,6	24		6	
$(22\overline{4}0)$	439,1	438,7	172	m	130	\mathbf{ms}
$(22\overline{4}1)$		452,8	0		0	
$(30\bar{3}3)$	454,8	455,7	36	SSS	25	ss
$(11\bar{2}5)$	461,6	461,7	143	m	101	\mathbf{ms}
$(31\bar{4}0)$	—	475,3	4		1.	
$(21\overline{3}4)$	480,8	481,2	34	ss	10	
$(31\overline{4}1)$	489,5	489,4	34	SS ·	10	555
$(22\overline{4}2)$		495,0	0		0	
$(20\overline{2}5)$		498,2	0		0	

Tabelle 2. Auswertung einer Pulveraufnahme der Phase (Ti, Mo)Si $_2$ (C 40-Typ).

Cu-K-Strahlung.

		Ti _{0,4} Mo _{0,6} Si ₂			Ti _{0,8} N	0 _{0,2} Si
Index	$10^3 \cdot \sin^2 \theta$ gef.	$10^3 . \sin^2 heta$ ber.	Int. ber.	Int. gef.	Int. ber.	Int. gef.
(0006)	506,1	506,9	48	SS	33	s
$(31\bar{4}2)$	531,4	531,6	30	s	9	SSS
$(10\overline{1}6)$		543,5	4		1	
$(30\overline{3}4)$	554,8	554,3	113	ms	79	\mathbf{ms}
$(22\overline{4}3)$	566,1	565,4	245	m	172	m
$(40\bar{4}0)$		585,0	16		5	
$(40\overline{4}1)$		599,1	0		0	
$(31\overline{4}3)$		602,0	7		2	
$(21\overline{3}5)$	607,4	607,9	27	ss	9	SSS
$(11\overline{2}6)$	615,9	616,6	26	ss	18	SSS
$(40\overline{4}2)$		641,3	0	-	0	
$(20\overline{2}6)$	652,8	653,1	31	ss	10	SSS
$(22\overline{4}4)$		664,0	0		0	
$(30\overline{3}5)$	680,0	681,0	98	ms	70	\mathbf{ms}
(3250)		694,6	3	-	1	
(0007)		689,9	0		0	
(3144)	701,0	700,6	. 28	ss	9)	
(3251)	711 3	∫ 708,7	28)	a diff	9 }	sss diff.
(4043)∫	,,,,,	711,7	31∫	s uni.	10	
(1017)		726,5	15		5	
(3252)	750,0	750,9	30	SS	10	SSS
(2136)		762,8	8	-	3	
$(41\overline{5}0)$	$\left\{\begin{array}{c} 765,0 \ \alpha_1 \\ 769,4 \ \alpha_2 \end{array}\right.$	767,8	28	ss	19	SSS
(4151)	$\begin{cases} 779,6 \ \alpha_1 \\ 783,9 \ \alpha_2 \end{cases}$	781,9	224	m	157	m
(2245)	—	790,7	0		- 0	
(1127)	$\left\{\begin{array}{l} 798,1 \ \alpha_1\\ 802,3 \ \alpha_2 \end{array}\right.$	799,6	115	ms	80	ms
(4044)		810,3	0		0	
(3253)	j <u> </u>	821,3	9	j <u> </u>	3	i —
(4152)	$\begin{cases} 822,0 \ \alpha_1 \\ 826,7 \ \alpha_2 \end{cases}$	824,1	246	m	174	m
(3145)		827,3	35		12	
(3036)	$\left \begin{array}{c} 833,3 \ \alpha_1\\ 837,2 \ \alpha_2 \end{array}\right $	835,9	32	SSS	23	SSS
$(20\overline{2}7)$		836,1	0		0	
(4153)	$\left\{\begin{array}{l} 892,9 \ \alpha_1\\ 896,1 \ \alpha_2\end{array}\right.$	894,5	77	ms	54	s
	•			1	ı	1

⁽Fortsetzung der Tabelle.)

Monatshefte für Chemie. Bd. 83/5.

		Ti _{0,4} Mo _{0,6} Si ₂			Ті _{0,8} М	0 _{0,2} Si ₂
Index	$10^3 \cdot \sin^2 \theta$ gef.	$10^3 \cdot \sin^2 \theta$ ber.	Int. ber.	Int. gef.	Int. ber.	Int. gef.
(0008)		901,1	0		0	
$(50\overline{5}0)$		914,0	3		1	_
$(32\bar{5}4)$	$\left\{\begin{array}{l} 918,4 \ \alpha_1\\ 923,1 \ \alpha_2 \end{array}\right.$	921,9	53	s	17	888
$(50\overline{5}1)$	$\begin{cases} 926,8 \ \alpha_1 \\ 930,4 \ \alpha_2 \end{cases}$	928,1	28	ss	9	—
$(40\bar{4}5)$		937,0	0		-0	
$(10\overline{1}8)$	936,5	937,7	33	SS	11	
(2246)	$\begin{cases} 943,5 \ \alpha_1 \\ 948,6 \ \alpha_2 \end{cases}$	945,5	$\left. \begin{smallmatrix} 519\\68 \end{smallmatrix} \right\}$	\mathbf{st}	$\left. egin{array}{c} 365 \\ 23 \end{array} ight\}$	\mathbf{mst}
$(50\overline{5}2)$	$\begin{cases} 968,0 \ \alpha_1 \\ 972,8 \ \alpha_2 \end{cases}$	970,3	40	SSS	13	
$(33\bar{6}0)$	985,6	987,1	4 6	SSS	32	SSS
$(41\bar{5}4)$	990,5 α_1	993,1	1020	\mathbf{st}	708	\mathbf{st}
(Mo. Ti)Sia	a = 4.6	4.	c = 6.49	e/	a = 1.39.

(Fortsetzung der Tabelle.)

$(\mathrm{Mo}_{0,6}\mathrm{Ti}_{0,4})\mathrm{Si}_2$	$a = 4,64_{4}$	$c = 6,49_0$	$c/a = 1,39_8$
$(\mathrm{Mo}_{0,2}\mathrm{Ti}_{0,8})\mathrm{Si}_2$	$a=4,69_0$	$\mathrm{c}=6{,}51_1$	$c/a = 1,38_8$
$(W_{0,4}Ti_{0,6})Si_2$	$a = 4,68_0$	$\mathrm{c}=6{,}47_{0}$	$c/a = 1,38_3$

Es liegt hier somit ein weiteres schönes Beispiel vor für die Steuerung eines Bauelements in einer homöotekten Strukturfamilie durch Angleichung der Partner. In Abb. 2a und bist der Verlauf der Volumina der Elementarzellen wiedergegeben. Im Mischkristallbereich stellt man in beiden Fällen eine geringe, relative Kontraktion fest.

Das System $MoSi_2$ — WSi_2 : Wie nicht anders zu erwarten, bilden diese beiden isotypen Phasen eine lückenlose Mischkristallreihe. Die von uns ermittelten Abmessungen der Elementarzelle von MoSi₂ liegen mit: $a = 3,19_6$, $c = 7,83_6$ und $c/a = 2,45_2$ zwar nahe den Werten von W. Zachariasen⁷ (3,200; 7,861), doch fanden wir für die Gitterkonstanten von WSi₂ insofern einen charakteristischen Unterschied, als unser c-Wert gegenüber MoSi₂ kleiner, bei Zachariasen aber größer als c_{MoSi_2} angegeben wird.

Gitterkonstanten von WSi₂:

(diese Arbeit)	$a = 3,20_4;$	$c = 7,81_3 \text{ kX} \cdot \text{E}.$
(Zachariasen)	$a = 3,21_2;$	$\mathbf{c} = 7{,}88_0\mathbf{kX\cdot E}.$

7 W. Zachariasen, Z. physik. Chem. 128, 39 (1927).

Index	$10^3 . \sin^2 heta$ gef.	$10^3 \cdot \sin^2 \theta$ ber.	Int. ber.	Int. gef.
(1010)	36,8	36,19	206	s
$(10\bar{1}1)$	50,38	51,0	1132	mst
(0002)		56,36	0	_
$(10\overline{1}2)$	93,4	92,55	559	m
$(11\overline{2}0)$	109,2	108,6	246	s
$(11\overline{2}1)$	122,6	122,7	1630	st
(0003)	127,3	126,8	590	ms
$(20\overline{2}0)$	145,2	144,8	293	ms
$(20\overline{2}1)$		158,9	0	·
$(10\bar{1}3)$	105 4	163,0	120)	
$(11\overline{2}2)$	165,4	165,0	1089	st
$(20\overline{2}2)$		201,2	0	
(0004)		225,4	0	
$(11\bar{2}3)$	235,7	235,4	144	8
$(21\bar{3}0)$		253,3	26	
(1014)	261,5	261,6	100	s
$(21\bar{3}1)$	266,8	267,4	193	ms
$(20\widetilde{2}3)$	271,5	271,6	214	ms
$(21\bar{3}2)$	310,3	309,7	156	ms
(3030)	325,7	325,7	43	SSS
$(11\tilde{2}4)$	333,9	334,0	333	m
(3031)	340,5	339,8	322	m
(0005)	_	352,3	0	
$(20\tilde{2}4)$		360,2	0	
$(21\tilde{3}3)$	· · · ·	380,1	28	
$(30\tilde{3}2)$	382,1	382,4	270	ms
(1015)	389,2	388,5	54	SSS
$(22\bar{4}0)$	435,6	434,3	244	m
$(22\overline{4}1)$		448,4	0	
(3033)		452,5	27	
$(11\bar{2}5)$	461,6	460,9	204	m
$(31\overline{4}0)$		470,5	10	
$(21\overline{3}4)$	479,1	478,7	80	ss
$(31\overline{4}1)$	484,3	484,6	81	ss
$(22\overline{4}2)$		490,7	0	—
$(20\bar{2}5)$		497,1	0	
(0006)	508,7	507,2	67	ss
(3142)	527,9	526,9	71	s

Tabelle 3. Auswertung einer Pulveraufnahme von (Ti, W)Si₂ (C 40-Typ), berechnet für $W_{0,4}$ Ti_{0,6} Si₂. Cu—K-Strahlung.

82*

1249

Index	$10^3 \cdot \sin^2 heta$ gef.	$10^3 \cdot \sin^2 heta$ ber.	Int. ber.	Int. gef.
(1016)		543.4	9	
(3034)	550,5	551,1	158	ms
$(22\overline{4}3)$	561.7	561.1	348	m
$(40\overline{4}0)$	579,1	579,0	36	SS
$(40\overline{4}1)$		593,1	0	
(3143)		597,3	16	<u> </u>
$(21\overline{3}5)$	605,7	605,6	65	s
$(11\overline{2}6)$	616,8	615,8	37	s
$(40\bar{4}2)$	_	635,4	0	
$(20\overline{2}6)$	652,0	652,0	73	ms
$(22\overline{4}4)$	<u> </u>	659,7	0	
(3035)	678,4	678,0	141	ms
$(32\tilde{5}0)$		687,6	8	
(0007)		690,4	0	_
$(31\bar{4}4)$	695,4	695,9	66	S
$(32\overline{5}1)$	701,8	701,7	66	S
(4043)	705,0	705,8	74	S
$(10\bar{1}7)$	728,5	726,6	35	SS
$(32\overline{5}2)$	743,9	744,0	75	s
$(21\overline{3}6)$	T 80 F	760,5	18]	c
$(41\bar{5}0)$	700,5	760,0	40∫	2
$(41\bar{5}1)$	$\begin{cases} 772,3 \ \alpha_1 \\ 775,2 \ \alpha_2 \end{cases}$	774,1	323	m
$(22\overline{4}5)$		786,6	0	
(1127)	$ \begin{cases} 798,1 & \alpha_1 \\ 802,3 & \alpha_2 \end{cases} $	799,0	167	ms
$(40\bar{4}4)$	—	804,4	0	
$(32\overline{53})$		814,4	20	—
(4152)	$\begin{cases} 814,7 \ \alpha_{1} \\ 818,7 \ \alpha_{2} \end{cases}$	816,4	359	m
$(31\overline{4}5)$	$\begin{cases} 820,1 \ \alpha_1 \\ 825,4 \ \alpha_2 \end{cases}$	822,8	85	s
(3036)	832,9	833,3	47	ss diff.
$(20\bar{2}7)$	— <u>,</u>	835,2	0	
$(41\bar{5}3)$	$\begin{cases} 884,7 \ \alpha_1 \\ 888,6 \ \alpha_2 \end{cases}$	886,8	113	\mathbf{ms}
(0008)		901,8	0	
$(50\bar{5}0)$		904,8	8	
(3254)	$\begin{cases} 911,6 \ \alpha_1 \\ 916,0 \ \alpha_2 \end{cases}$	913,0	128	ms

(Fortsetzung der Tabelle.)

1250

Index	10^3 . $\sin^2 heta$ gef.	$10^3 \cdot \sin^2 \theta$ ber.	Int. ber.	Int. gef.
(5051)	918,4	918,9	69	s diff.
$(40\overline{45})$		931,3	0	
$(10\overline{1}8)$		938,0	81)	
$(22\overline{4}6)$	$\begin{cases} 939,8 \ \alpha_1 \\ 944,7 \ \alpha_2 \end{cases}$	941,5	773,9	\mathbf{mst}
$(21\overline{3}7)$		943,7	168	
(5052)	$\begin{cases} 958,2 \ \alpha_1 \\ 963,6 \ \alpha_2 \end{cases}$	961 ,2	100	s
$(3360) \\ (31\overline{4}6) $	977,6	$ \left\{ \begin{array}{l} 977,1 \\ 977,7 \end{array} \right. $	$\left. \begin{array}{c} 69\\72 \end{array} \right\}$	ss diff.
(4154)	$ \begin{cases} 982,5 \ \alpha_1 \\ 988,0 \ \alpha_2 \end{cases} $	985,4	1520	st

(Fortsetzung der Tabelle.)

Es wurde wegen dieser Diskrepanz eine besonders sorgfältige Gitterkonstantenmessung an MoSi₂ und WSi₂ nach dem *Straumanis*-Verfahren

durchgeführt. Für die dazu verwendeten Rückwärtsinterferenzen berechneten wir sämtliche Intensitäten, um eine absolut einwandfreie Zuordnung der Linien treffen zu können. Zur Auswertung benützten wir die Interferenzen: (323), (316) und (402).

Abb. 3. Verlauf der Gitterkonstanten a und c im System $MoSi_2$ —WSi₂.

Der Gang der Gitterkonstanten von den Misch-Disiliziden beweist eindeutig, daß unser Wert der richtige sein muß. In Abb. 3 ist der Verlauf von a und e für Proben, bei 1800° C geglüht, wiedergegeben, welcher eine Zunahme von a und eine Abnahme von c beim Übergang von MoSi₂ nach WSi₂ erkennen läßt. Bereits bei den früher durchgeführten Messungen^{2, 3} lag der c-Wert von MoSi₂ eindeutig über dem von WSi₂. Die neuen Gitterkonstanten sind durchwegs kleiner, beanspruchen aber eine höhere Genauigkeit. Das Zellvolumen nimmt von MoSi₂ nach WSi₂ schwach zu⁸. Ob das sich dabei ergebende Maximum reell ist und mit dem eigenartigen Zunderverhalten zusammenhängt, bleibt dahingestellt.

Das System $TiSi_2$ — $MoSi_2$ — WSi_2 : Dieses Pseudo-Dreistoffsystem ist auf Grund der röntgenographischen Prüfung von Proben, die wieder bei 1300° aus den Disiliziden hergestellt wurden, weitgehend durch die

 8 Eine lückenlose Mischreihe bilden auch die Diboride $\rm{TiB}_{2}{--}\rm{ZrB}_{2};$ erscheint später.

1252 Nowotny, Kieffer u. Schachner: Strukturuntersuchungen an Disiliziden.

Verhältnisse der Randsysteme gekennzeichnet: Zwei lückenlose Mischkristallreihen: $MoSi_2$ — WSi_2 (C 11-Typ) und $(Mo_{0.6-0.05}Ti_{0.4-0.95})Si_2$ — $(W_{0.4-0.05}Ti_{0.6-0.95})Si_2$ (C 40-Typ). Es ergibt sich demnach ein sehr ausgedehntes homogenes Gebiet für die intermediäre Kristallart mit C 40-Struktur: (Ti, Mo, W)Si₂.

Die Systeme $CrSi_2$ — $MoSi_2$ und $CrSi_2$ — WSi_2 : Beide Paare haben grundsätzlich wieder gleichen Aufbau. Die Disilizide vermögen sich gegenseitig in erheblichem Ausmaß zu lösen. Die Mischungslücke, bestehend aus (Cr, Mo)Si₂ (C 40-Typ) + (Mo, Cr)Si₂ (C 11-Typ) bzw.

Abb. 4 a und b. Verlauf des Volumens der Elementarzellen von $MoSi_2$ bzw. WSi_2 sowie von $CrSi_2$ in den Systemen $MoSi_2$ — $CrSi_2$ und WSi_2 — $CrSi_2$.

 $(Cr, W)Si_2 + (W, Cr)Si_2$ besitzt nur eine geringe Breite, wie Abb. 4a und b zeigen. Der Schnitt bezieht sich wieder auf 1300°C. Auffallend ist der verschiedenartige Verlauf des Zellvolumens bei der Mischkristallbildung.

Zusammenfassung.

Röntgenographische Untersuchungen der Disilizidsysteme: TiSi₂---MoSi₂, TiSi₂---WSi₂, MoSi₂---WSi₂, CrSi₂---WSi₂ sowie TiSi₂---WSi₂ ergaben einen lückenlosen Übergang von MoSi₂---WSi₂, das Auftreten singulärer Kristallarten (Ti, Mo)Si₂ bzw. (Ti, W)Si₂, die mit dem C 40-Gitter isotyp sind und einen ausgedehnten homogenen Bereich besitzen. Diese Kristallart reicht fast bis an das reine TiSi₂ heran und kann als eine Art allotrope Form desselben aufgefaßt werden. Der Aufbau im System: TiSi₂---MoSi₂---WSi₂ wird angegeben.

 $MoSi_2$ und WSi_2 lösen beträchtliche Mengen (46 bzw. 64 Mol-%) $CrSi_2$; $CrSi_2$ vermag 31 Mol-% $MoSi_2$ bzw. 16 Mol-% WSi_2 homogen aufzunehmen. Die Gitterkonstanten wurden bestimmt.

Herrn Dipl.-Ing. F. Benesovsky sind wir für wertvolle Ratschläge und Aussprachen zu herzlichem Dank verpflichtet.